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The parametrisation of quantisation rules equivalent to 
operator orderings, and the effect of different rules on the 
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Received 25 July 1988 

Abstract. In this paper we recall the problem of choosing an ordering for the terms in a 
Hamiltonian of the form H ( p ,  q )  of finite dimension in p ,  q. We demonstrate that most 
orderings which provide us with a Hermitian operator are in fact redundant and we give 
a general form for ordering rules in terms of arbitrary parameters. We conclude that 
differences in the choice of an ordering contribute differences to the physics which are 
only of order hZ and higher. We provide an example of a Hamiltonian for which the 
spectrum is explicitly dependent on the choice of quantisation rule (operator ordering). 
We compare our method of characterising operator ordering rules with that of Cohen. 
Finally we generalise Cohen’s method to the case of all linear quantisation rules and show 
how his rule is a special case. 

1. Introduction 

The quantisation of a classical mechanical system is accomplished in general by making 
the following set of assignments: 

p +# = -ih a/aq 

H + A = ih  slat. (1) 
4 + $ = 4  

t + i = t  
This is the Schrodinger prescription for quantisation and is sufficient to make the 

link between a classical mechanical system and a quantum mechanical system for a 
variety of Hamiltonians, notably those of the form H = p 2 +  V ( q ) .  However in the 
more general case of Hamiltonians of the form H = H ( p ,  q )  the above set of rules is 
not sufficient, at least not in the sense of unambiguously assigning operators to classical 
monomials of the form pig’ for i, j 3 0. One is faced with what has become known as 
the ‘ordering problem’, namely the problem of choosing an ordering for each of the 
monomials in the expression for the Hamiltonian. 

Indeed it is debatable whether there is any choice of ordering which facilitates the 
passage from the classical case to the quantum mechanical case. It is possible that 
the success of the Schrodinger assignments (1) is little more than an accident. This 
does not appear to be the general consensus. There does appear to be a connection 
between classical mechanics and quantum mechanics, a connection which is nowhere 
more strongly suggested than by Dirac’s correspondence rule, which relates the Poisson 
bracket of classical mechanics to the commutator bracket of quantum mechanics by 
the scheme 
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812 P Crehan 

in which the algebraic properties of the classical variables 4, p and 1 are extended to 
the quantum mechanical operators 6, $ and 1 by a specific choice of product. 

However this may be, it is important a least to understand just how far and in what 
way the two theories can be deemed to 'correspond'. 

The minimum requirement is that the quantisation rule should provide us with a 
set of Hermitian operators which give back the classical expressions in the limit of h 
going to zero. 

However, it is not well understood just what freedom we have in carrying out this 
procedure. Many approaches are cited in the literature, taking the form of ordering 
rules of which the most important are: 

4 m p n  +i( A m A n + $ n q * m )  symmetric rule 2 4  P 

Weyl rule 

Of all these rules only one is distinguished from all the rest; the Weyl Rule has 
the property that it obeys a canonical invariance, i.e. the Weyl rule is invariant with 
respect to linear canonical transformations [ 11. Yet, apart from this, there is no reason 
why any one rule should be better than any other. Before we start to tackle the problem 
we establish our notational conventions. We assume that the physical space has 
dimension d and is represented by the coordinates 

4 = ( 41 , . . . , 4 d  1 * 
We also assume that the phase space is represented by 

( q , P ) = ( 4 1 ,  - * * Y q d , P l ,  * * , P d ) *  

This convention is assumed in all our notation; for example, 4" is to be understood 
to mean 

4; ' .  . .q?. 

~ : 0 ( 4 , P ) - , ~ ' ( C i , p ^ )  

The quantisation mapping will be denoted by R as follows: 

where the spaces O ( q , p )  and 6(4,$) denote the observables of the classical system 
and the quantum system respectively. 

2. The redundancy of operator orderings 

The confusing aspect about operator orderings is that it is difficult to have a good 
intuition as to how they affect the physics. For instance, how do we get around the 
problem that two different polynomial functions of 4 and $ might in fact be the same 
operator? 

As an example, take the monomial qp2. The most general operator ordering to 
which this can be assigned, (again within the ring generated by {$,$, 1)) is one of the 
form 

ff 482 + p$@ + y$yP̂24 
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subject to the constraint that a + p + y = 1. This is equivalent to requiring that the 
expression reduce to qp2 in the limit as h tends to zero. It is usual to assume that the 
coefficients are real, and that the operator is Hermitian. With this in mind we find 
that the most general quantisation rule for the operator 46' is given by 

n 0 q p 2  = a@2+ (1 - 2a)$@ + a$'4. ( 2 )  
For the values of a =$, 4 and a, we get the symmetric, the Born-Jordan and the Weyl 
rules respectively. However, we are at liberty to use the canonical commutation relation 
(CCR) 

[G,$]=ih. (3) 
If we apply this rule repeatedly to the operator ( 2 ) ,  so that in the final expression all 
the $ are on the left, and all the 4 are on the right then (2) becomes 

noqp'=$',j+ih$ 

which is independent of a. It is not true to say that this is the case for all operators 
corresponding to monomials. However, there is still a large degree of redundancy 
among operator orderings. We aim to establish just what freedom there is in choosing 
an ordering, and just how much of a difference is made to the physics by different 
orderings. 

A note also is in order about the choice of the C C R ( ~ ) .  It is generally assumed 
that the CCR are those given by (3). However, there has been a certain amount of 
speculation in the literature as to whether or not these follow from the equations of 
motion and, if not, what other possibilities are available. This line of questioning, it 
seems, was initiated by Wigner [ 2 ] ,  and solved, at least in the simple but instructive 
case of the harmonic oscillator, by O'Raifeartaigh and Ryan [ 3 ]  who showed that the 
CCR do not, in fact, follow from the equations of motion, and that other possibilities 
are available. However, for the purposes of this work we assume that the CCR are 
those given by (3). 

3. A parametrisation of operator ordering rules 

In quantising a monomial of the form qmpn we get a linear combination of the different 
orderings of m factors of 4, and n factors of $, subject to the requirement that the 
sum of the real coefficients is equal to zero (the assumption that the coefficients are 
real is not necessary, but seems reasonable for the moment). By using the CCR as often 
as necessary we can permute the factors of n o  qmpn so as to arrive at the following result: 

(4) 
An-1 Am-1 + h 2 a 2 $ n - 2  *m-2 +ifi3a3$n-3g-3+. 9 .  sz o qmpn =$"im +iha ,p  q 

where all of the terms al, a2 ,  a3 are real and every second term contains a factor of i. 
This effectively reduces the redundant degrees of freedom due to the ordering of 

factors (there are min(n + 1, m + 1) terms in this expression) yet we still require the 
operator to be Hermitian. To reduce the remaining degrees of freedom we must invoke 
the following lemma. 

Lemma 1. For 4, $ satisfying the relation [i, $1 = ih, 
min(m,n) ikhkk!( m, ( n)$n-kgm-k  

k k  [4", $ " I =  c 
k = l  
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This lemma is mentioned by Castellani [4], and also by Wolf [ 5 ,  p 1421, and is easily 
proven either by induction or more elegantly by using the Baker-Campbell-Hausdorf 
formula [6]. From this lemma and the fact that 

we see that each term f i n g m  can be written as a Hermitian part of the same degree, 
and other terms of lower degree. Using (5) and (6) we can replace each term in (4), 
transforming it into an equation of the form 

f i n g m  = $ ( f i n g m  + gyri) + ; [ f i n ,  4 m ]  (6) 

no q m p n  ='( A m A n  +fingm)+ifip i( ~ m - 1  An-1 
2 4 P  1 2  q p + f i n - ] g m - l ) + .  . . . 

Again all of the parameters are real and every second term has a pure imaginary 
coefficient. We now have an expression which has been broken up into its Hermitian 
and anti-Hermitian parts. The constraint that the operator be Hermitian implies that 
the coefficients of the imaginary terms vanish. This gives the result that any ordering 
of the original monomial can be rewritten to display its essential degrees of freedom, 
taking the form 

(7) 4 m p n  = f ( g m f i n + f i n $ m ) +  ~ 2 k p  i( ~ m - 2 k ~ n - 2 k $ f i n - 2 k g m - 2 k )  
2 k 2  4 P 

k>O 
m - 2 k z 0  
n - 2 k z 0  

Now, the number of parameters is given by min(int(n/2), int(m/2)). It remains for 
us to determine whether any expression of the form (7) corresponds to an operator 
ordering, i.e. are all the f f 2 k  free? 

This turns out to be true, and to see why we only need to recall that the expression 

is equal to the identity. This means that we can take any term of the form 

and insert 2k factors of the expression in (8). This provides us with a new expression 
equal to the original one, but now of degree n in f i  and degree m in cf. It is also easy 
to see that the coefficients of all the terms in the new expression sum to zero. This 
means that if we start off with an expression of the form (7) and insert the appropriate 
number of factors of the form (8), we arrive at a sum of terms, all of which contain 
m factors of 4 and n factors of f i  and the sum of whose coefficients is equal to one. 

We now have the main result, namely that the most general quantisation rule 
equivalent to an ordering with real coefficients, which provides a Hermitian operator, 
and which gives the correct classical limit as h goes to zero, is given by the formula 
in (7)  where the parameters p 2 k  are arbitrary real numbers. 

As an example of the practical significance of this result, take the case of the 
monomial q4p5. The most general operator ordering which corresponds to this term 
has 125 free parameters, before we impose Hermiticity. It is not obvious just how 
many degrees of freedom there really are. Our result shows that there are in fact only 
two free parameters. The most general operator corresponding to this monomial is 
given by 

From the form of (7), one can see that the choice of a specific operator ordering 
in a Hamiltonian is equivalent to a set of perturbations in h2, and that the most 
significant effect comes from the term of order h2  itself. 
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It is also worth noting that the only monomials to which there corresponds a unique 
quantisation rule are precisely the ones given by q", p",  qp" and pq". 

These are the largest Dirac class of observables, i.e. the largest class of observables 
to which one can consistently apply the Dirac correspondence, or the extended Dirac 
correspondence as Castellani calls it [4]. The generalisation of.(7) to the case of d 
dimensions is straightforward. 

4. The effect of different quantisation rules on the physical spectrum 

An example of a specific system in which one can see the effect of diff erent quantisation 
rules on the spectrum of energies is easy to contrive. We will take the case of the 
Hamiltonian 

H = $ ( p 2  + q2)  + A (  p 2 +  q2)3 .  ( 9 )  

This may appear a rather ufilikely Hamiltonian; however, there are classical perturba- 
tion methods (for example, the Birkhof-Gustavson method of the normal form [7,8]) 
which are of interest in semiclassical quantum theory and which can take the form of 

The term that gives the ordering problem is the second one, and the most general 
(9).  

rule assignable to this term is given by 

( p 2 +  4 7 3 9  p16+ p+ ;( p144*2+ 42p14) + 3 h2cy@2+ 3 (p12G4+ 44p12) + 3 h2pq^2 

where cy and p are two parameters which are not necessarily equal. However, for the 
sake of convenience we will take them to be equal. We note that if we require the 
quantisation rules to be invariant with respect to the transformation q + -p ,  p + q then 
this ensures that cy is equal to p. (There is no other reason for doing this except that 
it facilitates the calculation.) 

Now we can see that the most general quantisation of the Hamiltonian in (9), 
subject to this discrete invariance, is given by 

Cl 0 H =$( b2+ g2) + A ($'+ 42)3 + A (3 h2a -4)( p^*+ G2).  
The eigenfunctions of this Hamiltonian are the eigenfunctions of the Harmonic oscil- 
lator, and we see that the energy states of this system are labelled by n, and given by 

E , = ~ h ( 2 n + 1 ) + A R ( 2 n + 1 ) 3 + A h ( 3 h 2 a - 4 ) ( 2 n + 1 ) .  

The dependence of the spectrum on the choice of quantisation is contained in the 
arbitrary constant cy. 

5. Cohen's method of assignment 

Cohen was first to introduce a method for studying different quantisation rules and 
their relation to the formalism of path integrals [9,10]. This work, which evolved out 
of efforts to reformulate statistical mechanics, is described along with other things in 
the book by Langouche et a1 [ll], in which they investigate the theory of functional 
integration from the point of view of discretisations. However, for the sake of complete- 
ness and to motivate our next result, we will outline Cohen's idea. 
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The idea is that a correspondence rule is give: by a linear mapping from the 
functions on phase space, O(q, p ) ,  to the operators, O ( i ,  i) ,  and is completely charac- 
terised by its action on the phase-space function exp (iuq + ivp), which can be regarded 
as the generating function for monomials of the form qnpm.  In general a correspondence 
rule is given by the assignment 

Roexp(iuq+ivp)=O(u,  v)exp(iu$+ivi) .  (10) 

By equating coefficients of u and v on either side of (lo), or by operating on either 
side with the operator 

we get the operator function of 6, 6 corresponding to the phase-space function of q"p". 
For example, the Weyl rule, the symmetric rule and the Born-Jordan rule are obtained 
by simply choosing n ( u ,  v )  to be 

n ( u ,  v )  = 1 

n ( u ,  v )  =cos ( iuuh)  

a( U, U )  = (tuvh)-'  sin ( i u v h )  

respectively (see [9,4] and [ l l ,  p 181). 
It is also worth mentioning that other ordering rules which are commonly used are 

also included as special cases of Cohen's method, such as the normal ordering of 
quantum field theory [ 11,  p 671 which is obtained using 

n ( u ,  U )  = exp [dh(u2+  U')] 

but differs from all the other rules in that it does not satisfy the condition implied by 
(11)  and given in (12). The reason is that this rule is not strictly an ordering rule since 
it arises from a combination of a linear canonical transformation and a standard 
ordering in which creation operators are put to the left of annihilation operators. 

Using the fact that an arbitrary b(q, p )  E O(q,  p )  fl L2(q, p )  can be written 

6(u ,  U )  exp (iuq+ivp) du dv b ( q , p )  = 

where 

6(u,  U )  = ( 2 ~ ) - ~  b ( p ,  q )  exp (-iuq-ivp) dp dq. I 
We obtain the correspondence rule associating 6'( <, 5) with the phase-space function 
b ( q , p )  via 

Q 0 b(:,<) = 6( U, v)n( U, U) exp (iuq + ivi )  du dv I 
where now the freedom for choosing the correspondence rule is contained in the SZ 
function. 
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6. Implication for Cohen's assignment 

By requiring that correspondence rules fulfil various criteria, for example, that they 
always provide the assignments 

" f ( 4 )  = f ( q ^ )  = f ( p * )  ( 1 1 )  

n( U, 0) = 1 n(0, U) = 1. (12) 

we effectively restrict the form of the 0 function. The above conditions imply that 

It has been remarked by Langouche et a1 [ 11,  p 401, and also by Castellani [4], that 
requiring the correspondence rules for monomials like p"q" to be equivalent to the 
weighted average of different orderings of n factors of p* and m factors of q  ̂ means 
that the Cl function depends on U and v through the function uvh, i.e. that 

n ( u ,  v )  = 1 + a (  uvh) + p (  uuh)2+ .  . . . 
However, in the light of our results one can now say that if our correspondence rules 
are equivalent to real orderings, and furnish Hermitian operators, then we have 

n ( u ,  v )  = @(U, v )  cos($uvh) 

where 
w ( u ,  v ) =  1+a'(uvh)2+p'(Uvh)4+. . 

and all of the constants a' and p' are free parameters. 

n ( u ,  U) exp (iuij+ivp*) = w ( u ,  v )  cos($uuh) exp(iuq^+ivp*) 
To see that this is so consider the following: 

= w ( u ,  v)i(exp(iuq^) exp(ivq^)+exp(ivp*) exp(iuq^) (14) 
in which the term 

d (exp (iuqf ) exp (iup^) + exp (ivp*) exp (iuq^)) 

f ( q  ̂"p^ " + p* mq^ " ) . 
can be regarded as the generating function for terms of the form 

If we take the expression in (14) and consider its Taylor expansion in terms of U and 
v we only have to look at the coefficient of in+"'unvm to see to what function of 4 and 
$ the monomial q"p" has been mapped. It is easy to compare this expression with 
the one in (7) to see that W ( U ,  v )  must take the form we have given it in (13). 

From one point of view this is very nice, since (13) places a powerful restriction 
on the form that the function must take. However, the preceding discussion also 
serves to illustrate the fact that Cohen's method of assignment is not able to furnish 
us with all the correspondence rules compatible with our requirements, and shows 
furthermore that this method is quite restrictive in the sense that once we determine 
the O( h2)  correction for one operator then the O( h 2 )  correction is determined for all 
the other operators. 

As an example, there is no w function which makes the following set of assignments: 
p343+ $( 4 3 $ 3 + p ^ 3 4 3 )  + $ ah2(p*q  ̂+ @) 
p444 + f (4"4+p*444) + $ p h  (p*2q^2+ c p p I 2 )  + y 

for arbitrary choices of a and p. In this case Cohen's method gives a =4p.  Similar 
relations hold for all the other monomials and the corrections to all other orders, as 
can be seen by considering the power-series expansion of (14). 
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7. Generalisation of Cohen's method 

As a basis for the spaces of classical and quantum observables, we use the following 
sets of functions labelled by the continuous parameters U = ( u l , .  . . , ud) and U = 

exp (iuq^ + iuj?). 

If we require that our quantisation rules be linear then the effect of R on the base 
functions of O( q, p )  determines the quantisation of an arbitrary f( q, p )  E O(q, p )  as 
follows: 

( V I , .  . ., ulf): 

exp (iuq + iup) 

Roexp(iuq+iup)= R(u, u,s ,  t)exp(isq^+itp^)dsdt. (15) I 
The R( U ,  U, s, t )  are a family of generalised functions and contain complete information 
about the quantisation rules. 

We are now in a position to write down the most general linear quantisation rule 
relating these two spaces of observables: 

Rof (q ,p )=Ro  I ?(U, U) exp(iuq+iup) du du 

= I ?( U, U )  (R 0 exp (iuq + iup)) du du 

= ?(U,  u)R(u, U, s, t )  exp(isq^+it$) du du ds dt  

where 

So far we have only required linearity of the quantisation rules and there has been no 
restriction on the form that R(u, U, s, t )  might take. 

If we require that our rules provide Hermitian operators then we have 

" f ( 4 ,  P) = (0 O f ( %  PI)* 
where * denotes complex conjugation. This implies that 

?(U,  u)R(u, U, s, t )  exp(isq^+itp^) du d u d s  dt  

= [?(U, u)*R(u, U, s, t)*exp(-isq^-itj?) du du ds d t  

= [ ? ( - U ,  -v)*R(-u, -U, -s, - t ) *  exp(isq^+isp^) du du ds d t  

= ?(U, u)R(-u, -U, -s, -?)* exp(isq^+isj?) du du ds dt. 

This tells us that the requirement of Hermiticity places the following restriction on the 
form of a: 

I 

R(u, U, s, t )  =R(-u, -U, -s, - t ) * .  (16) 
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This is quite similar to Cohen's result in that, instead of (15), Cohen had 

noexp(iuq+ivp)=w(u,  U )  exp(iuq*+ivp^) 

and in his case the requirement of Hermiticity means that, instead of (16), the following 
has to hold: 

w ( u ,  U) = @(--U, -U)*. 

The requirement that we retrieve the classical limit is easily seen to be 

l i m S l ( u , v , s , r ) = S ( u - s , v - t )  
h+O 

compared with the requirement in Cohen's scheme that 

lim w ( u ,  U) = 1. 
h+O 

8. Relationship of the general rule to the Cohen rule 

To clarify the relationship between these two schemes it is helpful to consider a choice 
for n ( u ,  U, s, r )  of the form 

u n v m  
n,maO n!m! 

n ( u ,  U, s, t )  = C in+"-qnm(s, t ) .  

Since we are dealing with linear quantisation rules we can look at the Taylor expansion 
of both sides of (15) and compare powers of U and U. This provides us with the 
mappings between the monomials induced by the quantisation mapping a. We find 
that the classical monomials are mapped according to 

C l 0  q"p" = I anm(s, t )  exp(isq^+itp^) ds dt. 

It is by now obvious that the functions anm given by 

Onm(s,  t )  = w,,(s, r ) y  q"p" exp(-isq -itp) dq dp 
l I  

provide us with the freedom to quantise each one of the classical monomials in any 
way we like. Each U,, plays exactly the same role as the w functions of Cohen, and 
we can see by inspection that, given the special form of n ( u ,  U, s, t ) ,  the requirement 
of Hermiticity in the new scheme reduces to that in the old scheme. 

9. The condition of translational invariance 

One of the remarkable features of the quantisation rules of Cohen is that they are 
translationally invariant [ 11, 121. We will now show that the requirement of transla- 
tional invariance reduces the more general method of algebraic quantisation to the 
original method of Cohen. Before discussing this we introduce some more notation. 
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Define ~ ( a ,  P )  to be the translation operator whose action on both O ( q , p )  and 
6($, p^) is given by 

7: d a ,  P 1 O f ( %  P) = f ( q  + a, P + P )  
7: 7(a,P)of(q^,P1)=f(q^+a,PI+P).  

a o T ( a ,  P ) o f ( 4 , P ) = T ( a , P ) O f l o O f ( q , P )  (17) 

Then the requirement of translational invariance is the requirement that 

for all f ( q , p )  E O ( q , p ) .  This is seen to be satisfied trivially by Cohen’s quantisation 
rules. Applying (17) to the case of an arbitrary quantisation rule we get 

fl O 7(a ,  P )  O f ( %  P) 

= n o -  ’ j ( u ,  U )  exp(iuq+iup) exp(iua +iuP) du du 
(27r)2d 

f ( u ,  v)R(u, U, s, t )  exp(isq^+itp^) exp(iua+iup) du  dv ds  dl  
1 - -wI 

= 7(a ,  P )  O fl O f ( %  P) 

= T(a,  p )  O- v ) n ( u ,  U, s, t )  exp(isq^+itp^) du dv ds d t  
(27r)2d 

- -‘Jf(u, u)fl (u,  v ,s ,  t)exp(isq^+itp^)exp(isa+itp) du d u d s  dt. 
(2 .n)2d 

This tells us that 

f ( u ,  v ) a ( u ,  v, s, t )  (exp(iua +iuP) 

-exp(isa+i@) exp(isq^+itp^)) du d u d s  d t  = O  
5 
and we want this to hold for all a, P, 4, p̂  and for all f( q, p )  E O( q, p ) .  The requirement 
that it holds for all f ( q ,  p )  E O(q, p )  means that 

n ( u ,  v, s, t )  (exp(iua+iup)-exp(isa+itp) exp(isq^+itp^))ds d t = 0 .  I 
That this condition holds for all 4, p  ̂ requires that 

n ( u ,  v,s ,  t )  (exp(iua+ivp)-exp(isa+itp))=O (18) 

at least in the sense of distributions. Again this must vanish for all a and P. 
The only possibilities are that either f l (u ,  U, s, t )  vanishes everywhere or, on the 

points where it does not vanish, it forces the term exp(iua + ivp) - exp(isa + irp) to 
vanish instead. In other words, the only solution to (18) is 

n ( u , v , s ,  t ) = w ( u , v ) S ( u - s , v - t ) .  
If we substitute this expression for n ( u ,  v, s, t )  in (15) then we arrive at the following 
result: 

fl 0 exp(iuq+ivp) = n ( u ,  v, s, t )  exp(isq^+itp^) ds  d t  I =I w(~ ,v )S(u- s ,v - t ) exp( i sq^+i tp^)dsdt  

= w ( u ,  U )  exp(iuq^+ivp^). 
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We have established that the only linear quantisation rules which have the property 
of translational invariance are those of Cohen. 

As a final remark on the translational invariance property of quantisation rules, it 
is worth pointing out that this is equivalent to the condition that the quantisation 
mapping Cl commute with ai, the partial derivatives. The latter are well defined and 
unambiguous for arbitrary functions of 4, p^. 

10. Conclusion 

What we find interesting about all this is that nature seems capable of telling us more 
about quantisation rules. We no longer have to deal with the huge number of parameters 
involved in characterising operator ordering rules, and so this information seems more 
accessible. Despite this, different choices of ordering lead to differences in the physics 
of O( A * )  and higher. This of course corresponds to the case of real ordering rules (all 
of the usual rules fall into this category); however, since the operators 4, p̂  are generally 
regarded as the generators of a ring over C, it might be more appropriate to consider 
the more general case of complex orderings. In this case the differences to the physics 
will be of O ( h )  and higher. 

There is a terminology useful in the context of 0 2, namely that of enveloping 
algebras. The enveloping algebra for any given Lie algebra is the quotient algebra 
obtained by considering the free algebra modulo the commutation relations. Effectively 
what we have done in 9 3 is to construct the enveloping algebra generated by (4, p ,̂ A }  
modulo [g, p^] = ih. The problem of quantisation is therefore the problem of finding 
a map R from O(q, p )  into the enveloping algebra. 

It can be regarded as either comforting or disturbing that the O(Ak)  differences in 
the quantisation of observables depend on a single parameter in any translationally 
invariant linear quantisation scheme. The requirement of translational invariance is 
natural in the sense that translations are the simplest possible canonical transformations. 
This property (as defined in 0 9) is, however, coordinate dependent, and a Hamiltonian 
in spherical coordinates does not generally have the property of invariance under a 
translation of r, f3 and 4. For this method of dealing with quantisation to have any 
real value we have to be able to investigate systems in different coordinate representa- 
tions and how our quantisation rules transform between them. The Cohen rules do 
not constitute the only class of linear quantisation rule, and for the reasons already 
mentioned we should be prepared to deal with schemes which do not fall within the 
Cohen’s framework. This is not to say that his scheme is not useful (after all, the 
conventional rules are all amenable to his method of assignment) but it should, however, 
be borne in mind that any results proven within this framework do not treat the problem 
in all generality. 

The non-commutativity of 4 and p  ̂ is not easy to work with and we have only dealt 
with the case where the commutation relations are of the simple form in (3). O’Raifear- 
taigh and Ryan [3] have shown that even in the case of the simple harmonic oscillator 
the CCR need not be of that form. Many other operator algebras which do not have 
such simple relations are used in physics, and it would be of interest to investigate the 
effect of different orderings on the quantisation of systems in other representations, 
such as the angular momentum representation. 

Another area where we might exploit this parametrisation of quantisation rules is 
that where semiclassical methods are employed, i.e. in cases where both classical and 
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quantum mechanical canonical transformations are used (we will refer to these as CCT 

and QCT respectively). It is well known that CCT and QCT do not in general commute 
with the order of quantisation [ 5 ,  p 2261 and one of the difficulties in studying this 
area is that when we make a transformation from one system to another we do not 
always understand how the quantisation rules transform. However, it might be possible 
in systems of reasonable complexity that, rather than worrying about the validity of 
interchanging CCT and QCT for a fixed method of quantisation, we can use the freedom 
of choosing different quantisation rules to find classes of systems for which the CCT 
and QCT can be made to commute. We hope to have more to say on this topic in 
another paper still in preparation. 
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